Un enlace de hidrógeno es la fuerza atractiva entre un átomo electronegativo y un átomo de hidrógeno unido covalentemente a otro átomo electronegativo. Resulta de la formación de una fuerza dipolo-dipolo con un átomo de hidrógeno unido a un átomo de nitrógeno, oxígeno o flúor (de ahí el nombre de "enlace de hidrógeno", que no debe confundirse con un enlace covalente a átomos de hidrógeno). La energía de un enlace de hidrógeno (típicamente de 5 a 30 kJ/mol) es comparable a la de los enlaces covalentes débiles (155 kJ/mol), y un enlace covalente típico es sólo 20 veces más fuerte que un enlace de hidrógeno intermolecular. Estos enlaces pueden ocurrir entre moléculas (intermolecularidad), o entre diferentes partes de una misma molécula (intramolecularidad). El enlace de hidrógeno es una fuerza de van der Waals dipolo-dipolo fija muy fuerte, pero más débil que el enlace covalente o el enlace iónico. El enlace de hidrógeno está en algún lugar intermedio entre un enlace covalente y una simple atracción electrostática intermolecular. Este tipo de enlace ocurre tanto en moléculas inorgánicas tales como el agua, y en moléculas orgánicas como el ADN.
El enlace de hidrógeno intermolecular es responsable del punto de ebullición alto del agua (100°C). Esto es debido al fuerte enlace de hidrógeno, en contraste a los otros hidruros de calcógenos. El enlace de hidrógeno intramolecular es responsable parcialmente de la estructura secundaria, estructura terciaria y estructura cuaternaria de las proteínas y ácidos nucleicos.
Un átomo de hidrógeno unido a un átomo relativamente electronegativo es un átomo donante del enlace de hidrógeno. Este átomo electronegativo suele ser flúor, oxígeno o nitrógeno. Un átomo electronegativo tal como el flúor, oxígeno o nitrógeno es un aceptor de enlace de hidrógeno, sin importar si está enlazado covalentemente o no a un átomo de hidrógeno. Un ejemplo de un donante de enlace de hidrógeno es el etanol, que tiene un átomo de hidrógeno enlazado covalentemente al oxígeno; un ejemplo de aceptor de enlace de hidrógeno que no tiene un átomo de hidrógeno enlazado covalentemente a él es el átomo de oxígeno en el éter dietílico.
El carbono también puede participar en enlaces de hidrógeno, especialmente cuando el átomo de carbono está enlazado a algunos átomos electronegativos, como en el caso de cloroformo, CHCl3. El átomo electronegativo atrae la nube electrónica alrededor del núcleo de hidrógeno y, al decentralizar la nube, deja al átomo con una carga positiva parcial. Debido al pequeño tamaño del hidrógeno en comparación a otros átomos y moléculas, la carga resultante, aunque sólo parcial, no representa una gran densidad de carga. Un enlace de hidrógeno resulta cuando esta densidad de carga positiva fuerte atrae a un par libre de electrones de otro heteroátomo, que se convierte en el aceptor de enlace de hidrógeno.
El enlace de hidrógeno suele ser descrito como una interacción electrostática dipolo-dipolo. Sin embargo, también tiene algunas características del enlace covalente: es direccional, fuerte, produce distancias interatómicas menores que la suma de los radios de van der Waals, y usualmente involucra un número limitado de compañeros de interacción, que puede ser interpretado como un tipo de valencia. Estas características covalentes son más significativas cuando los aceptores se unen a átomos de hidrógeno de donantes más electronegativos.
La naturaleza parcialmente covalente de un enlace de hidrógeno da origen a las preguntas: "¿A qué molécula pertenece el núcleo de hidrógeno?" y "¿Cuál debería ser etiquetado como 'donante' y cuál como 'aceptor'?" Generalmente, es fácil determinar esto basándose simplemente en las distancias interatómicas del sistema X—H...Y: típicamente, la distancia X—H es ~1.1 Å, mientras que la distancia H...Y es ~ 1.6 a 2.0 Å. Los líquidos que muestran enlace de hidrógeno se llaman líquidos asociativos.
Los enlaces de hidrógeno pueden variar en fuerza, desde muy débiles (1-2 kJ mol−1) a extremadamente fuertes (>155 kJ mol−1), como en el ion HF2−.Algunos valores típicos incluyen:
- F—H...F (155 kJ/mol)
- O—H...N (29 kJ/mol)
- O—H...O (21 kJ/mol)
- N—H...N (13 kJ/mol)
- N—H...O (8 kJ/mol)
- HO—H...:OH3+ (18 kJ/mol)
- (Información obtenida usando dinámica molecular como se detalla en la referencia, y debería ser comparada con 7.9 kJ/mol para agua en bruto, obtenida también usando la misma dinámica molecular.)
La longitud de los enlaces de hidrógeno depende de la fuerza del enlace, temperatura, y presión. La fuerza del enlace misma es dependiente de la temperatura, presión, ángulo de enlace y ambiente (generalmente caracterizado por la constante dieléctrica local). La longitud típica de un enlace de hidrógeno en agua es 1.97 Å (197 pm). El ángulo de enlace ideal depende de la naturaleza del donante del enlace de hidrógeno. Los resultados experimentales del donante fluoruro de hidrógeno con diversos aceptores muestran los siguientes ángulos:
Aceptor···Donante |
Simetría TREPEV |
Ángulo (°) |
HCN···HF |
lineal |
180 |
H2CO ··· HF |
trigonal plana |
110 |
H2O ··· HF |
piramidal |
46 |
H2S ··· HF |
piramidal |
89 |
SO2 ··· HF |
trigonal plana |
145 |
Enlaces de hidrógeno en el agua
El ejemplo de enlace de hidrógeno más ubicuo,y quizás el más simple, se encuentra entre las moléculas de agua. En una molécula discreta de agua, el agua contiene dos átomos de hidrógeno y un átomo de oxígeno. Dos moléculas de agua pueden formar un enlace de hidrógeno entre ellas; en el caso más simple, cuando sólo dos moléculas están presentes, se llama dímero de agua y se usa frecuentemente como un sistema modelo. Cuando más moléculas están presentes, como en el caso del agua líquida, más enlaces son posibles, debido a que el oxígeno de una molécula de agua tiene dos pares libres de electrones, cada uno de los cuales puede formar un enlace de hidrógeno con átomos de hidrógeno de otras dos moléculas de agua. Esto puede repetirse, de tal forma que cada molécula de agua está unida mediante enlaces de hidrógeno a hasta cuatro otras moléculas de agua, como se muestra en la figura (dos a través de sus pares libres, y dos a través de sus átomos de hidrógeno).
El elevado punto de ebullición del agua se debe al alto número de enlaces de hidrógeno que cada molécula tiene, en relación a su baja masa molecular, y a la gran fuerza de estos enlaces de hidrógeno. En realidad, el agua tiene puntos de ebullición, fusión y viscosidad muy altos, comparados con otras sustancias no unidas entre sí por enlaces de hidrógeno. La razón para estos atributos en la inhabilidad, o dificultad, para romper estos enlaces. El agua es única porque sus átomos de oxígeno tiene dos pares libres y dos átomos de hidrógeno, significando que el número total de enlaces de una molécula de agua es cuatro. Por ejemplo, el fluoruro de hidrógeno -que tiene tres pares libres en el átomo de flúor, pero sólo un átomo de hidrógeno- puede tener un total de sólo dos; el amoníaco tiene el problema opuesto: tres átomos de hidrógeno, pero sólo un par libre.
- H-F...H-F...H-F
El número exacto de enlaces de hidrógeno en los que una molécula en el agua líquida participa fluctúa con el tiempo, y depende de la temperatura. A partir de simulaciones de agua líquida TIP4P a 25°C, se estima que cada molécula de agua participa en un promedio de 3.59 enlaces de hidrógeno. A 100°C, este número disminuye a 3.24, debido al incremento en el movimiento molecular y consecuente densidad disminuida, mientras que a 0°C, el número promedio de enlaces de hidrógeno se incrementa a 3.69.[7] Un estudio más reciente encontró un número mucho menor de enlaces de hidrógeno: 2,357 a 25°C[8] Las diferencias pueden deberse al uso de un método diferente para definir y contar enlaces de hidrógeno.
Donde las fuerzas de enlace son más equivalentes, se podría encontrar los átomos de dos moléculas de agua partidas en dos iones poliatómicos de carga opuesta, específicamente hidróxido (OH−) e hidronio (H3O+). (Los iones hidronio también son conocidos como iones 'hidroxonio').
- H-O− H3O+
Sin embargo, en agua pura bajo condiciones normales de presión y temperatura, esta última formulación es aplicable sólo raramente; en promedio aproximadamente una en cada 5,5 × 108 moléculas cede un protón a otra molécula de agua, en concordancia con la constante de disociación para el agua bajo tales condiciones. Es una parte crucial de la unicidad del agua.
Enlaces de hidrógeno bifurcados y sobrecoordinados en el agua
Puede darse que un solo átomo de hidrógeno participe en dos enlaces de hidrógeno, en vez de en uno. Este tipo de enlace es denominado "bifurcardo". Se ha sugerido que el enlace de hidrógeno bifurcado es un paso esencial en la reorientación del agua;.
Los aceptores de enlaces de hidrógeno (que terminan en los pares libres del átomo de oxígeno) son más propensos a formar la bifurcación (en efecto, se le denomina oxígeno sobrecoordinado) que los donantes.