Un enlace químico es el proceso físico responsable de las interacciones atractivas entre átomos y moléculas, y que confiere estabilidad a los compuestos químicos diatómicos y poliatómicos. La explicación de tales fuerzas atractivas es un área compleja que está descrita por las leyes de la electrodinámica cuántica.[1] Sin embargo, en la práctica los químicos suelen apoyarse en la mecánica cuántica o en descripciones cualitativas que son menos rigurosas, pero más sencillas en su descripción del enlace químico. En general, el enlace químico fuerte está asociado con la compartición o transferencia de electrones entre los átomos participantes. Las moléculas, cristales, y gases diatómicos -o sea la mayor parte del ambiente físico que nos rodea- está unido por enlaces químicos, que determinan la estructura de la materia.
Los enlaces varían ampliamente en su fuerza. Generalmente, el enlace covalente y el enlace iónico suelen ser descritos como "fuertes", mientras que el enlace de hidrógeno y las fuerzas de Van der Waals son consideradas como "débiles". Debe tenerse cuidado porque los enlaces "débiles" más fuertes pueden ser más fuertes que los enlaces "fuertes" más débiles.
Cuando los átomos forman moléculas o compuestos lo hacen mediante la unión de electrones generando un enlace químico. Para que los electrones se unan y formen un enlace deben ocupar el mismo orbital. Esto ocurre cuando ambos electrones poseen momentos magnéticos opuestos, de modo que existe una fuerza de atracción magnética. Además, los núcleos (positivos) de los átomos así enlazados ejercen una fuerza de atracción electrostática sobre los electrones (negativos) involucrados en el enlace.
Ahora bien, los electrones que participan en la formación de un enlace químico no siempre se distribuyen del mismo modo entre los átomos unidos. La distribución de los electrones entre los átomos depende de la electronegatividad de cada uno de elementos enlazados. Cuando uno de los elementos es mucho más electronegativo que el otro, los electrones del enlace estarán sobre el núcleo electronegativo, por lo que entonces los electrones en sus orbitales atómicos superan en uno al número de protones en su núcleo; este desbalance de cargas eléctricas le confiere una carga negativa al átomo y lo transforma en un anión. Por el otro lado, ya que el elemento electropositivo ha cedido uno de sus electrones (el del enlace) al elemento electronegativo, ahora posee un electrón menos en sus orbitales atómicos, respecto al número de protones en su núcleo, por lo que el desbalance eléctrico le genera una carga positiva y lo transforma en catión. Estas cargas diferentes sobre los átomos unidos producen una fuerza de atracción electrostática sumamente fuerte llamada enlace iónico.
Cuando los elementos unidos poseen valores de electronegatividad iguales, los electrones que forman el enlace se distribuyen homogéneamente y son compartidos por ambos átomos; como los átomos enlazados no han perdido ni ganado electrones, su balance eléctrico es neutro. En este caso se ha formado un enlace covalente.
Si los elementos unidos poseen valores de electronegatividad similares, los electrones que forman el enlace se distribuyen de manera heterogénea; es más probable encontrarlos sobre el núcleo del elemento de mayor electronegatividad; sin embargo, existe una pequeña probabilidad de localizar a los electrones del enlace sobre el núcleo menos electronegativo. Ya que el orbital está orientado hacia uno de los átomos enlazados, se genera un ligero desbalance eléctrico (o polos eléctricos parciales) en cada uno de ellos y se produce, en consecuencia, un dipolo eléctrico. Este tipo de enlace se llama enlace covalente polar.
Por otro lado, existen casos en los que un solo átomo proporciona el par de electrones necesarios para formar un enlace con otro elemento. De este modo se establece un enlace coordinado. Ya que el átomo donador del par de electrones cede uno de éstos al elemento receptor, se transforma en catión al adquirir una carga formal por el desbalance eléctrico entre los protones de su núcleo y sus electrones en los orbitales atómicos.
Estos enlaces químicos son fuerzas intramoleculares, que mantienen a los átomos unidos en las moléculas. En la visión simplista del enlace localizado, el número de electrones que participan en un enlace (o están localizados en un orbital enlazante), es típicamente un número par de dos, cuatro, o seis, respectivamente. Los números pares son comunes porque las moléculas suelen tener estados energéticos más bajos si los electrones están apareados. Teorías de enlace sustancialmente más avanzadas han mostrado que la fuerza de enlace no es siempre un número entero, dependiendo de la distribución de los electrones a cada átomo involucrado en un enlace. Por ejemplo, los átomos de carbono en el benceno están conectados a los vecinos inmediatos con una fuerza aproximada de 1.5, y los dos átomos en el óxido nítrico, NO, están conectados con aproximadamente 2.5. El enlace cuádruple también son bien conocidos. El tipo de enlace fuerte depende de la diferencia en electronegatividad y la distribución de los orbitales electrónicos disponibles a los átomos que se enlazan. A mayor diferencia en electronegatividad, con mayor fuerza será un electrón atraído a un átomo particular involucrado en el enlace, y más propiedades "iónicas" tendrá el enlace ("iónico" significa que los electrones del enlace están compartidos inequitativamente). A menor diferencia de electronegatividad, mayores propiedades covalentes (compartición completa) del enlace. Los átomos enlazados de esta forma tienen carga eléctrica neutra, por lo que el enlace se puede llamar no polar. Los enlaces covalentes pueden ser simples cuando se comparte un solo par de electrones, dobles al compartir dos pares de electrones, triples cuando comparten tres tipos de electrones, o cuádruples cuando comparten cuatro tipos de electrones. Los enlaces covalentes no polares se forman entre átomos iguales, no hay variación en el número de oxidación. Los enlaces covalentes polares se forman con átomos distintos con gran diferencia de electronegatividades. La molécula es eléctricamente neutra, pero no existe simetría entre las cargas eléctricas originando la polaridad, un extremo se caracteriza por ser electropositivo y el otro electronegativo.